Large nutrient variation in the North Pacific Transitional Area

Sayaka Yasunaka (JAMSTEC, Japan)

with Yukihiro Nojiri (NIES & Hirosaki Univ., Japan) Tsuneo Ono (FRA, Japan) Frank Whitney (IOS, Canada) Shin-ichiro Nakaoka (NIES, Japan)

- 1. Ship-of-opportunity nutrient observation
- 2. Gridded products
- 3. Seasnal change & biological production
- 4. Decadal to long-term variability

Ship-of-opportunity sampling for nutrients

 IOS and NIES have carried out ship-ofopportunity nutrient sampling.

- Surface water samples were manually collected from the seawater lines installed for pCO₂ observation, routinely at 2 or 3 samples per day.
- Sampled nutrient tubes were stored frozen, then analyzed by colorimetric techniques in the onshore laboratories.
- Ship-of-opportunity nutrient sampling improved data coverage of bottle samplings by the research vessels.

Wong et al. (2002); Whitney (2011); Yasunaka et al. (2014)

Nutrient sampling at ocean surface

Yasunaka et al. (2016)

Number of Nutrient Sampling (1961-2012)

Mapping 1: SOM technique (2001/01-2010/12)

Self organizing map (SOM)

can empirically induce the relationship between parameters without any apriori assumptions of regression functions and divided areas.

1. Training

#Neuron	SST	SSS	CHL	MLD	LAT	LON	NO3
1	29.3	34.2	0.06	37.7	15.5	129.4	NaN
1799	11.4	32.8	0.65	12.6	40.0	159.3	9.5
1800	12.7	32.8	0.61	11.7	46.4	155.8	4.7

Mapping 1: SOM technique (2001/01-2010/12)

Mapping 2: Optimal interpolation (1961/01–2012/12)

Correlation scale: Zonal: 23° Meridional: 20° Temporal: 3-month SN ratio: 1.5

Interpolation error $^2 < 0.7$

Yasunaka et al. (2016)

Mapping 2: Optimal interpolation (1961/01–2012/12)

Seasonal change

Seasonal change

Climatological seasonal change of P, N, Si and DIC \rightarrow 9 clusters

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Concentrations are high in the subarctic, low in the subtropics. G

130H 40H 50H 60H 70F180 70W60W50W40W30W20W10W00W

Max: Mar Min: Aug-Oct

50N

40N

30N

20N -

Amplitudes are In the subarctic, $\begin{bmatrix} 30\\ 20 \end{bmatrix}$ small in the subtropics.

Yasunaka et al. (2014b)

Seasonal drawdown Mar-

Mar-Aug *1: Large drawdown

*2: Nutrient drawdown ~ 0

DIC drawdown > 0

- *3: Nitrogen fixation
- *4: Diatom

*5: Labile DOP/DIP using microbes

	ΔnP	ΔnN	ΔnSi	ΔnC	ΔnN/ ΔnP	∆nSi/ ∆nP	ΔnC/ ΔnP
А	0.70	12.98	23.85	84.2 *1	18.5	34.1	120.0
В	0.53	9.36	13.90	78.8	17.7	26.0	148.7
С	0.40	7.28	7.02	55.6	18.2	17.6	139.0
D	0.30	4.96	3.34	41.0	16.5	11.1	136.0
Е	0.79	11.31	16.30	113.8 *1	14.3	20.6	144.1
F	0.45	6.28	7.88	90.1	14.0	17.5	200.2 *5
G	-	-	-	30.4	-	-	-
Н	-	-	-	27.9 *2	-	-	-
I	-	-	-	16.7	-	-	-

Relation to biological production

Net Community Production (NCP)

Yasunaka et al. (2013)

Decadal & long-term variability

Yasunaka et al. (2016)

Decadal & long-term variability

Yasunaka et al. (2016)

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

b) Nitrate [µmol/l 2 -2 -4 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 (c) Silicate [µmol/l] 8 4 0 -4 -8 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

(a) Phosphate

[µmol/l] 0.2

0.1

-0.1

-0.2

0

Long-term trend

P: $-0.012 \pm 0.005 \mu mol/l/dec$ N: -0.001 ±0.013 µmol/l/dec Si: $-0.38 \pm 0.13 \mu mol/l/dec$

Global warming

- \rightarrow Shallowing mixed layer
- \rightarrow Reduction of

entrained nutrient

Observed trend P: $-0.012 \pm 0.005 \mu mol/l/dec$ N: $-0.001 \pm 0.013 \mu mol/l/dec$ Si: $-0.38 \pm 0.13 \mu mol/l/dec$ Entrainment effect P: $-0.014 \pm 0.006 \mu mol/l/dec$ N: $-0.19 \pm 0.09 \mu mol/l/dec$ Si: $-0.45 \pm 0.21 \mu mol/l/dec$

P and Si trend ← shallowing MLD

- Global anthropogenic N depositions: 54 TgN/yr (Duce et al. 2008 and references therein)
- $\rightarrow\,$ If it is uniformly distributed in the upper 500 m of the ocean, it increases the N concentration by 0.2 $\mu mol/l/dec.$

N trend — shallowing MLD + anthropogenic N depositions

18.6-yrear cycle

Moon orbit changes the inclination with the 18.6-yr, which generates the 18.6-yr modulation of tidal mixing.

Positive response

around Aleutian and Kuril Islands

- <- high nutrient water to the surface
- <- strong vertical mixing
- <- strong 18.6-yr oscillation of tidal energy dissipation rate

Other observations

Nitrate continuous observation by optical sensor

Biogeochemical Argo

2018/03

I hope various observations are continued, and data are archived in a user-friendly form.

- SOOP observations improved data coverage of the traditional datasets (i.e. bottle sampling by the research vessels).
- Nutrient data accumulation enable us to understand largescale variability of nutrients.
- Large seasonal drawdown and decadal-scale variation were found in the North Pacific Transitional Area.
- Continued observations and data archiving are desired.

References:

- Yasunaka et al. (2016) Long-term variability of surface nutrient concentrations in the North Pacific, GRL 43, 3389-3397.
- Yasunaka et al. (2014a) Mapping of sea surface nutrients in the North Pacific: basin-wide distribution and seasonal to interannual variability, JGR 119, 7756-7771.
- Yasunaka et al. (2014b) North Pacific dissolved inorganic carbon variations related to the Pacific Decadal Oscillation, GRL 41,1005-1011.
- Yasunaka et al. (2013) Monthly maps of sea surface dissolved inorganic carbon in the North Pacific: basin-wide distribution and seasonal variation, JGR 118, 3843-3850.

Estimate of entrainment reduction

- Obtain ρ data from T and S data from Ishii and Kimoto (2009).
- 2. Convert the surface ρ -trend into a long-term trend of MLD by using the climatological ρ -profiles during summer at the climatological MLD in winter. $\rightarrow 2.3 \pm 0.9$ m decade⁻¹
- 3. Assuming that annual new production is constant (c), determine the winter nutrient concentration at year i+1 (n^{i+1}_w) from the winter nutrient concentration at year i (n^i_w) , the winter mixed layer depth (h^{i+1}_w) , and summer euphotic zone depth (h_s) : $n^{i+1}_w = \{(n^i_w - c) h_a + [a + b (h_a + h^{i+1}_w)/2](h^{i+1}_w - h_a)\}/h^{i+1}_w$ by Freeland et al. (1997).
- 4. Integrate this equation over 52 years.

